Tutorial 11

April 14, 2016

1. Dirichlet Principle

$$\mathcal{A} = \{ w \in C^1(\bar{D}) \cap C^2(D) : w = f(x) \text{ on } \partial D \}$$

The Dirichlet Energy

$$E(w) = \frac{1}{2} \iiint_D |\nabla u|^2 dx$$

If $u(x) \in \mathcal{A}$ satisfies $E(u) \leq E(w) \quad \forall w \in \mathcal{A}$. Show that $\Delta u = 0$ in D. **Proof:** Let v(x) be any smooth function that vanishes on ∂D . Then $u(x) + \epsilon v(x) \in \mathcal{A}$,

$$E(u+\epsilon v) = \frac{1}{2} \iiint_D |\nabla(u+\epsilon v)|^2 dx = E(u) + \epsilon \iiint_D \nabla u \cdot \nabla v + \epsilon^2 E(v)$$

By using the first Green's Formula and v = 0 on ∂D , we have

$$E(u + \epsilon v) = E(u) - \epsilon \iiint_D \Delta uv + \epsilon^2 E(v)$$

Since the minimum occurs for $\epsilon = 0$, hence $\frac{d}{d\epsilon}E(u+\epsilon v)\Big|_{\epsilon=0} = -\iint_D \Delta uv = 0$ for any smooth function v(x). Let $v(x) \equiv 1$ on D' where $\overline{D'} \subset D$ and $v(x) \equiv 0$ on D/D'. Suppose $v_n(x)$ is a family of smooth functions that converges to v(x) almost everywhere on D as $n \to \infty$. Thus

$$0 = \lim_{n \to \infty} \iiint_D \Delta u v_n dx = \iiint_D \lim_{n \to \infty} \Delta u v_n = \iiint_D \Delta u v = \iiint_{D'} \Delta u$$

(where we have used the Lebesgue Dominated Covergence Theorem.) Hence by Second Vanishing Theorem, $\Delta u = 0$ in D.

2. Solve $u_{xx} + u_{yy} = 0$ in the wedge $r < a, \ 0 < \theta < \beta$ with the BCs

$$u = \theta$$
 on $r = a$, $u = 0$ on $\theta = 0$, and $u = \beta$ on $\theta = \beta$.

(*Hint*: Look for a function independent of r.)

Solution: It is obvious that $u(r, \theta) = \theta$ is a solution. Hence, by the uniqueness theorem, $u(r, \theta) = \theta$ is the unique solution.